Escherichia coli FPG and human OGG1 reduce DNA damage and cytotoxicity by BCNU in human lung cells.

نویسندگان

  • Ying-Hui He
  • Yi Xu
  • Masayoshi Kobune
  • Min Wu
  • Mark R Kelley
  • William J Martin
چکیده

The pulmonary complications of 1,3-N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU) are among the most important dose-limiting factors of BCNU-containing cancer chemotherapeutic regimens. BCNU damages DNA of both cancer cells and normal cells. To increase the resistance of lung cells to BCNU, we employed gene transfer of Escherichia coli formamidopyrimidine-DNA glycosylase (FPG) and human 8-oxoguanine-DNA glycosylase (hOGG1) to A549 cells, a lung epithelial cell line, using a bicistronic retroviral vector, pSF91-RE, that encoded both FPG/hOGG1 and an enhanced green fluorescent protein. The transduced epithelial cells were sorted by flow cytometry, and expression of FPG/hOGG1 protein was determined by the level of FPG/hOGG1 RNA and enzyme activity. The single-cell gel electrophoresis (comet assay) measured DNA damage induced by BCNU. FPG/hOGG1-expressing A549 cells incubated with 40-500 microg/ml BCNU exhibited significantly less DNA damage than vector-transduced cells. In addition, FPG- and/or hOGG1-expressing cells incubated with 10-40 microg/ml BCNU showed at least a 25% increase in cell survival. Gene transfer of FPG/hOGG1 reduced BCNU-induced DNA damage and cytotoxicity of cultured lung cells and may suggest a new mechanism to reduce BCNU pulmonary toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Base excision repair of reactive oxygen species-initiated 7,8-dihydro-8-oxo-2'-deoxyguanosine inhibits the cytotoxicity of platinum anticancer drugs.

Anticancer therapy with cisplatin and oxaliplatin is limited by toxicity and onset of tumor resistance. Both drugs form platinum-DNA cross-linked adducts, and cisplatin causes oxidative DNA damage including the 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) lesion. To assess oxidative DNA damage as a mechanism of cisplatin and oxaliplatin cytotoxicity, 8-oxodG-directed base excision repair was s...

متن کامل

Retrovirus-mediated expression of the base excision repair proteins, formamidopyrimidine DNA glycosylase or human oxoguanine DNA glycosylase, protects hematopoietic cells from N,N',N"-triethylenethiophosphoramide (thioTEPA)-induced toxicity in vitro and in vivo.

Modulation of DNA damage repair activity could lead to new approaches to reduce cytotoxic side effects of chemotherapy. N,N',N"-Triethylenethiophosphoramide (thioTEPA) induces the formation of amino-ethyl adducts of guanine, resulting in imidazole ring opening [formamidopyrimidine (Fapy)] and is associated with significant myelosuppression in dose-intensive therapies. In Escherichia coli, Fapy ...

متن کامل

Synthesis, In vitro Antimicrobial and Cytotoxic Activities of Some Novel Bis- 1, 3, 4-oxadiazoles

A series of novel bis-1,3,4-oxadizaoles were synthesized by oxidative cyclisation of respective Schiff bases derived from dicarbohydrazide using ceric ammonium nitrate (CAN) as catalyst. The synthesized compounds were screened for in vitro antibacterial activity against Staphylococcus aureus (MTCC 87), Escherichia coli (MTCC 46) and antifungal activity against Candida albicans (NCIM 3471) by tw...

متن کامل

Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae.

The OGG1 gene of Saccharomyces cerevisiae encodes a DNA glycosylase activity that is a functional analog of the Fpg protein from Escherichia coli and excises 7,8-dihydro-8-oxoguanine (8-oxoG) from damaged DNA. The repair of this ubiquitous kind of oxidative damage is essential to prevent mutations both in bacteria and in yeast. A human cDNA clone carrying an ORF displaying homology to the yeast...

متن کامل

Evaluation of silica nanoparticles cytotoxicity (20-40 nm) on cancerous epithelial cell (A549) and fibroblasts cells of human normal lung fibroblast (MRC5)

Introduction: Silica nanoparticles have received more attraction in medical and industrial applications due to their unique properties such as small size, the possibility of surface functionalization, ease of production, and low cost. So, it is necessary to study the respiratory toxicity of occupational exposure due to the production and increasing use of silica nanoparticles, especially in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 282 1  شماره 

صفحات  -

تاریخ انتشار 2002